

Nonlinear analysis of Rozenoordbrug

Ewa Krysiak

15.09.2022

Diana Users Association - Lecture Evening

Involved parties

Rijkswaterstaat Ministerie van Infrastructuur en Waterstaat

Arcadis. Improving quality of life.

Presentation plan

- Introduction
- Bridge layout
- Plans for the road adjustments
- Cracks
- Linear analysis
- Nonlinear Analysis
- Final strengthening

Arcadis. Improving quality of life.

History and location

- The bridge has been built in the 80's.
- Crosses Amstel river
- Consists of 5 traffic lanes and 1 bicycle lane
- Since 2018, the bridge has been the subject of a series of recalculations to verify whether it complies with the applicable regulations with regard to constructive safety at the current situation

Arcadis. Improving quality of life.

Bridge layout

Top and side view

ARCADIS

^{• 5} spans: 27.5 - 45 - 67 - 65 - 53.3

Cross section, prestress

Repurposing

Linear analysis

Pictures by TNO

Nonlinear model

Reinforcement

Results of phase 4

Analysis1 Phased 1, Load-step 60, Load-factor 0.70000 Crack Strains Eknn maximum of 3 layers min: 0.00e+0 max: 1.15e-2

0

5

10

15

Displacement [mm]

20

25

30

Eknn 5.00e-3 4.38e-3 3.75e-3 3.13e-3 2.50e-3 1.87e-3 1.25e-3 6.25e-4 0.00e+0

Memo Maciej Kraczla

Analysis1 Phased 1, Load-step 61, Load-factor 0.72500 Total Strains E3 minimum of 3 layers min: -1.80e-2 max: -7.25e-6

Analysis1 Phased 1, Load-step 62, Load-factor 0.75000 Total Strains E3 minimum of 3 layers min: -5.08e-2 max: -5.57e-6

Passive support

- As first: jack up cross beams 3, 4, 5
- Second: Fixing supports

Discovered failure mechanisms

- 1. The collapse of the pressure diagonal weakened by diagonal cracks in the transverse beams, as a result of concentrated compressive stresses near the supports;
- 2. Tearing the main beam from the crossbeam, shear;
- 3. Breaking the main beam on bend, by crushing the compression diagonal, right next to the connection to the cross beam.

Cross beam 4 – ECOV analysis

Passive support of cross beam 4

The main girders and the outer corner of crossbeam 4 are elastic under compression, and have a high tensile energy to prevent failure in these zones

(ε = -2.3‰).

deflection [mm]

8

9

11

24

© Arcadis 2022

26 October 2022

Google street view now

Thank you for your attention!

Questions?