

Existing bridge structures

Reassessment of existing shear-prone bridge structures using NLFEA

Dross beam Leading jack , Pj • DIANA FEA user 2023 (release 10.6)

Dutch Highway A1 Apeldoorn Azelo

Reassessment of existing shear-prone bridge structures using NLFEA

- Widening of Dutch highway
- Shear force problem

開 wagemaker

Reassessment based on LE-calculations

RTD1006 (RBK1.1)

(1) De rekenwaarde van de dwarskrachtweerstand $V_{\text{Rd,c}}$ is gegeven door:

 $V_{\rm Rd,c} = [C_{\rm Rd,c}k(100 \ \rho_{\rm I} f_{\rm ck})^{1/3} + k_1 \ \sigma_{\rm cp}] \ b_{\rm w}d$

met een minimum van

 $V_{\rm Rd,c} = (v_{\rm min} + k_1 \sigma_{\rm cp}) b_{\rm w} d$

Shear strength was nearly sufficient

"New" developments "shear knowledge"

SYS-0824	6.2.2 (1)-NEN-EN 1992-1-1	Kunstwerk	
Eistekst	De rekenwaarde van de dwarskrachtweerstand voor situaties waarbij de voorspanning gelegen is aan de gedrukte zijde van de constructie moet bepaald worden met $\sigma_{cp} = 0$.		
Toelichting	Dit artikel betreft bijvoorbeeld bruggen met statisch bepaalde liggers (trek aa onderzijde) die met het storten van de druklaag worden samengevoegd tot e onbepaald systeem (met trek aan de bovenzijde nabij de tussensteunpunten) waarbij de voorspanning zich bevindt aan de gedrukte zijde van de construct het beoogde toepassingsgebied van dit artikel van NEN-EN 1992-1-1. Door ir uit te gaan van $\sigma_{cp} = 0$ zal een ondergrens gevonden worden voor het betonad dwarskrachtcapaciteit van de te beschouwen doorsnede.	k aan de ot een statisch ten). Deze situatie 'uctie, valt buiten or in deze situatie conaandeel in de	

RTD1001 (ROK2.0)

 $\begin{array}{ll} N_{\text{Ed}} & \text{is de normaalkracht in het verificatievlak ten gevolge van belasting} \\ & \text{of voorspanning in [N] } (N_{\text{Ed}} > 0 \text{ voor druk}). \text{ De invloed van} \\ & \text{opgelegde vervormingen op } N_{\text{Ed}} \text{ mag zijn verwaarloosd.} \\ & \text{Bij statisch onbepaald gemaakte voorgespannen liggerviaducten met} \\ & \text{voorspanstaal mag de bijdrage van de voorspanning in } N_{\text{Ed}} \text{ ter} \\ & \text{plaatse van de tussensteunpunten niet in rekening gebracht worden.} \end{array}$

RTD1006 (RBK1.2.1)

(1) De rekenwaarde van de dwarskrachtweerstand $V_{\text{Rd,c}}$ is gegeven door:

$$V_{\rm Rd,c} = [C_{\rm Rd,c} k (100 \ \rho_{\rm I} f_{\rm ck})^{1/3} + k_{\rm recp}] b_{\rm w} d$$

met een minimum van

$$V_{\rm Rd,c} = (v_{\rm min} + k_{\rm resc}) b_{\rm w} d$$

i.e. $\sigma_{cp} = 0$ MPa

Bending moment due to prestress

Bending moment

external loading

Shear strength was not sufficient (max. u.c. 2.19)

Non Linear Finite Element Analysis

Guidelines for Nonlinear Finite Element Analysis of Concrete Structures

 Doc.nr.:
 RTD 1016-1:2017

 Version:
 2.1

 Status:
 Final

 Date:
 15 June 2017

- Physical NLFEA
- DIANA FEA 10.3
- 3D-analysis necessary
- GRF-philosophy (ultimate load of the system)
- Simulation of shear failure

12

Water. Wegen. Werken. Rijkswaterstaat

🚆 wagemaker

Modeling (III)

- DIANA FEA model in R3-world
- Phased analysis
 - Phase 1: Dead weight + Prestress + cast in-situ weight
 - Phase 2: Monolithic with additional loading P + Q

Modeling (V)

• Stirrup reinforcement beams

Constitutive model concrete (I)

• Material models acc. RTD1016-1(2019)

Figuur 46: Spanning-rekrelatie beton onder druk

Figuur 47: Spanning-rekrelatie beton onder trek

開 wagemaker

Model validation - result phased analysis

Model validation - Modeling prestress + rebar

Results NLFEA (I) - Base analysis

Convergence / load-displacement

📕 🛗 wagemaker

21

Results NLFEA (II) - Base analysis

Results NLFEA (III) - Base analysis

Results NLFEA (IV) - Base analysis

- Development fracture zones
- Last conv. step = > GRF (P_{GRF} + 2.025 Q)
- Shear crack arrested by bent strands?!

Development of deformation and strain.mp4

Analysis - NLE

Phased 2, Load-step 53, Load-factor 2.4250

Total Strains E1 maximum of 7 layers

min: 8.41e-ó max: 3.48e-2

Results NLFEA (VI) - Sensitivity / parameter study

- Research, e.g.:
 - Influence spring stiffness substructure
 - Positioning Tandemsystems
 - Number of strands
 - MEAN material props
 - Predamaged shear-prone region
 - Etc.

Existing bridge structures

Reassessment of existing shear-prone bridge structures using NLFEA

