

DIANA Seminar

Constitutive Model for the Non-linear Cyclic Behavior of Brick Masonry

Marianthi Sousamli

June 14th 2023

Overview

Background

Description of constitutive model

□Validation against experiments

Comparison with existing models

Conclusions

Background

Background

Background

<u>TSRCM</u>

<u>EMM</u>

 (σ_1, σ_2)

- + Damage localization
- Capacity overestimation
- Energy dissipation

- $(\sigma_{xx}, \sigma_{yy}, \tau_{xy})$
- Damage localization
- + Capacity estimation
- + Energy dissipation

- Orthotropic Total-Strain-Rotating-Crack Model
- Orthotropic behavior
- Description of the second s
- □ Failure in tension, compression
- Tensile softening depending on cracking angle
- □ (Indirect) failure in shear
- Is independent material variables

TUDelft

Variation of material properties

Linear variation for $E_{p,i}$, $f_{c,i}$, $G_{ft,i}$, $G_{fc,i}$

fuDelft

After cracking: material properties are fixed to those corresponding to the cracking angle a_{crack}

 $\beta_{i} = \begin{cases} \frac{\beta_{x}(|\alpha_{crack,i}| - \theta_{fl})^{2}}{\theta_{fl}^{2}} & \text{for } \theta_{fl} \ge |\alpha_{crack,i}| \ge 0^{o} \\ \beta_{y} \sin\left(4.5\left(|\alpha_{crack,i}| - (90^{o} - \theta_{fl})\right) & \text{for } 90^{o} \ge |\alpha_{crack,i}| \ge 90^{o} - \theta_{fl} \end{cases} \end{cases}$

Cyclic behavior

Shear limitation

- Coaxiality of $\sigma_i \varepsilon_i$
- $\tau_{max} = \max\left(c_o, c_0 \tan\phi\left(\sigma_{yy0} + E_y \cdot \delta\varepsilon_{yy}\right)\right)$

Validation

TUD_COMP_4

Current model

TUDelft

Validation

TUD_COMP_6

EMM

TSRCM

TUDelft

Current model

E1 2.81e-09 2.00e-09 1.19e-09 3.79e-10 -4.30e-10 -1.24e-09 -2.05e-09 -3.67e-09

TUD_COMP_4

Current model

TSRCM

Micro-IS-CCS

EMM

Micro-CCCS (Lourenco)

Rankine Hill Anisotropy

TUD_COMP_6

Current model

Micro-IS-CCS

Micro-CCCS (Lourenco)

Rankine Hill Anisotropy

HIGSTA

13

LOWSTA

Micro-IS-CCS

EMM

TSRCM

 Rankine Hill Anisotropy

Computational time & effort

	TUD-COMP-4	TUD-COMP-6	LOWSTA	HIGSTA
TSRCM	0:17:49	1:31:34	0:06:48	0:18:07
EMM	0:11:44	-	0:03:12	0:04:17
RHA	0:45:54	-	1:01:35	1:14:54
USRMAT	1:12:53	1:16:27	0:19:20	0:12:25
CCCS	0:18:30	1:04:54	0:09:05	0:11:56
SI-CCS	0:37:37	1:40:26	0:16:15	0:23:18

Conclusions

□Accurate prediction of base shear capacity

Improvement of dissipated energy

□Sharp damage localization

Numerical instabilities

Computational time

Thank you 🕲

Tensile Behaviour

Tensile strength

 $f_t(\theta) = f_{t0} - (f_{t0} - f_{t90}) \cdot \frac{|\theta|}{\frac{\pi}{2}} + \left(f_{tmax} - \frac{f_{t1} + f_{t2}}{2}\right) \cdot \sin(4\theta)$ with $f_{tmax} = \sqrt{f_{t0}^2 + f_{t90}^2}$

Post-peak behaviour

Compressive Behaviour

$$f_c(\theta) = f_{c0} + (f_{c90} - f_{c0}) \cdot \frac{|\theta|}{\frac{\pi}{2}}$$

$$G_{fc}(\theta) = \alpha_c + (G_{fc0} - G_{fc90}) \frac{|f_c(\theta)|}{|f_{c0}| - |f_{c90}|}$$

with
$$\alpha_c = \frac{(G_{fc90} \cdot |f_{c0}| - G_{fc0} \cdot |f_{c90}|)}{|f_{c0} - f_{c90}|}$$

