Application of fracture mechanics for settlement damage prediction

Maetee Boonpichetvong* & J.G. Rots

Structural Mechanics Group
Faculty of Architecture
Delft University of Technology

Outline

- Background and motivation
- •Semi-coupled analysis (2D Example)
- •Large-scale continuum and discrete crack analyses
- Coupled analysis

Background: Induced settlement by bored tunnelling

The bored tunnelling activities lead to surface settlements that may damage neighbouring structures, especially the historical masonry buildings.

The greenfield surface settlement caused by bored tunnelling

Motivations

- •Lack of the reliable either analytical or empirical method for evaluating the cracking damage of above ground structures
- •Limitation of current analytical and empirical methods to provide the reliable information for making engineering decision in this coupled interaction analysis
- •Significant need of the robust and versatile numerical model for this class of soil-structure interaction problem

Semi-coupled analysis

Nature of quasi-brittle material

- A Brittle material e.g. Glass
- B Quasi-brittle material e.g. Masonry, Concrete
- C Plastic material e.g. Steel

Material properties

Masonry, decomposed strain fixed smeared crack model by Rots (1988) E=6000 N/mm², ν =0.2, f_t=0.3N/mm², G_f=0.05N/mm No-tension bedding interface, K=0.15 N/mm³

Loading scheme

- 1) Self weight
- 2) Live load at each floor = 5 kN/m
- 3) Prescribed displacement loading of surface settlement

Induced surface settlement

$$S_{v} = S_{max} \exp[-x^2/2i^2]$$

$$S_h = [x/z_o]S_v$$

$$S_{\text{max}}^{T} = 0.31 \text{VD}^2/\text{i}$$

(After Schmidt and Peck 1969)

i=10 m, D=6.5 m

Original ground level

Greenfield surface settlement

► Hogging zone

Settlement trough and position of facade in the hogging zone

CL Tunnel axis
Underground tunnel

Relation between angular distortion and maximum crack-width

Crack pattern at angular distortion = 1/1000

Crack pattern at critical angular distortion = 1/800

Fully-open crack at critical angular distortion

Fully-open crack after critical angular distortion

Deformed mesh and principal strain at critical angular distortion

Deformed mesh and principal strain after critical angular distortion

Stress locking after the critical angular distortion

Performance of continuum crack models in largescale fracture

- Two-stage mechanism of cracking response
- Convergence problem in the second plateau

Reduction of stress locking zone by total strain rotating smeared crack model

Improper unloading options in plasticity-based crack model in handling non-proportional loadings

Effect of fracture properties on the building performance

Discrete crack analysis

Potential crack by interface elements

- Steer non-linear analysis by arc-length control technique
- Snap-back response due to significant difference between elastic stored energy and fracture energy

Computed angular distortion versus maximum crack width for the discrete crack analysis, compared with those by smeared crack analysis

Incremental deformation during snap back response in discrete crack analysis

Residual principal tensile stress in discrete crack analysis

Material properties

Masonry

 $E=6000 \text{ N/mm}^2$, v=0.2, $f_t=0.3 \text{N/mm}^2$, $G_f=0.05 \text{N/mm}$

No-tension bedding interface

<u>Soil</u>

Basic soil model with three simplified strata

Depth	E (MPa)	ν	K _o	γ (kN/m ³)
0-10 m	10	0.35	0.748	17
10-25 m	30	0.35	0.748	17
25-40 m	100	0.30	0.357	20

Excavation simulation

Realistic inverted Gaussian settlement curve predicted for greenfield situation

Greenfield movement profile at volume loss = 1%

For a façade with sufficient fracture strength

Observed negligible cracking damage but functionally undesirable tilt and building movement in range of 1-5 % volume loss

Influence of building stiffness on ground movement profile at volume loss = 5%

For a weak façade of little strength

Crucial damage detected in the range of typical 1-2 % ground loss in the current tunnelling practice

Façade response of the highly brittle material

Interacted ground response for the highly brittle façade

Example of possible settlement damage in the selected historical building by coupled analysis

99E-2 95E-2 931E-2 901E-2 8718-2 842E-2 B12E-2 7825-2 7538-2 723E-2 693E-Z 654E-Z 634E-2 604E-2 575E-2 545E-Z 515E-Z 486E-2 357E-Z 2788-2 219E-Z .189E-2 .159E-2 .13E-2

Key summaries

- •Promising solutions in both qualitative and quantitative aspects by fracture mechanics simulation in finite element method for this research subject
- •Enhanced crack models and smart solution techniques required to achieve a better convergence and performance for the very brittle behaviour faced in large-scale fracture analysis e.g. sequentially linear continuum concept (Rots 2002)
- •Necessary future computational investigations are required to achieve the objectivity of the results together with validation of the available on-site instrumentation data