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-Background and motivation
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Background: Induced settlement by bored tunnelling

The bored tunnelling activities lead to surface settlements that
may damage neighbouring structures, especially the historical
masonry buildings.
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M otivations

.Lack of the reliable either analytical or empirical method for
evaluating the cracking damage of above ground structures

-.Limitation of current analytical and empirical methods to
provide the reliable information for making engineering
decision in this coupled interaction analysis

-Significant need of the robust and versatile numerical model
for this class of soil-structure interaction problem




Semi-coupled analysis
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Mesh layout in semi-coupled analysis
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-Modelling of foundation by
soil-structure interface and
eguivaent soil-foundation
medium

-Direct imposition of surface
settlement to bottom of model
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Nature of quasi-brittle material
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B - Strain softening branch in quasi-brittle material

G, = Amount of energy required to create one unit of
area of continuous crack
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A - Brittle material e.g. Glass
B - Quasi-brittle material e.g. Masonry, Concrete
C - Plastic materia e.g. Steel

u then crack fully opens




Material properties

Masonry, decomposed strain fixed smeared crack model by Rots (1988)
E=6000 N/mm?, v=0.2, f =0.3N/mm?, G; = 0.05N/mm
No-tension bedding interface, K=0.15 N/mm?3

L oading scheme

2) Live load at each floor = 5 kN/m

3) Prescribed displacement loading of || (L /L L (L Tl L T

surface settlement




| nduced surface settlement

S, =S, eXp[-x4/2i]
S, =[X/z,]S,

S, = 0.31VD7i
(After Schmidt and Peck 1969) S I N S I R B O B
1=10 m, D=6.5m

Original ground leve

Greenfield surface settlement

» Hogging zone

X
> Settlement trough and
CL , Tunnel axis position of facade in the
Underground tunnel m hogging zone
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Relation between angular distortion and maximum crack-width




Crack pattern at angular distortion
= 1/1000

Crack pattern at critical angular
distortion = 1/800




Fully-open crack at critical angular
distortion

Fully-open crack after critical
angular distortion
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Deformed mesh and principal strainat Deformed mesh and principal strain
critical angular distortion after critical angular distortion
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Stress locking after the critical angular distortion
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Performance of continuum crack models in large-

scale fracture
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e—o Decomposed-strain fixed smeared crack model | -

== Total strain fixed smeared crack model
+—e Total strain rotating smeared crack model

s—a Rankine plasticity crack model

e Two-stage mechanism
1 of cracking response
1 e Convergence problem
1 in the second plateau
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Reduction of stress locking zone by total strain rotating smeared crack model
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Improper unloading options in plasticity-based crack model in
handling non-proportional loadings
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Effect of fracture properties on the building performance
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—a With low Gf
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Discrete crack analysis

Potential crack by interface elements

H ! T ‘ |« Steer non-linear analysis by
| - arc-length control technique
| I;Ei [ 8 ii'§3'| - * Snap-back response due to
| | i | | significant difference between
s P elastic stored energy and
| | fracture energy
|Ei||| III|| II”iI I
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Computed angular distortion versus maximum crack width for the discrete
crack analysis, compared with those by smeared crack analysis
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Incremental deformation during snap back response in discrete crack analysis
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Residual principal tensile stress in discrete crack analysis




TR Coupled analysis
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Material properties

M asonry

E=6000 N/mm?, v=0.2, f =0.3N/mm?, G, = 0.05N/mm

No-tension bedding interface
Soil

Basic soil model with three ssimplified strata

Depth E (vpPa) Y K, Y (KN/m?)
0-10m 10 0.35 0.748 17
10-25m 30 0.35 0.748 17

25-40 m 100 0.30 0.357 20




Excavation simulation

Realistic inverted Gaussian settlement curve predicted for greenfield
situation
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For a facade with sufficient fracture strength

Observed negligible cracking damage but functionally undesirable
tilt and building movement in range of 1-5 % volume loss
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For a weak facade of little strength

Crucial damage detected in the range of typical 1-2 % ground loss in the
current tunnelling practice
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Facade response of the highly brittle material
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Interacted ground response for the highly brittle fagade




177

kR 1 8 B |

p 8 &8 2 B}

Example of possible settlement
damage 1n the selected historical
building by coupled analysis
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Key summaries

-Promising solutions in both qualitative and quantitative aspects
by fracture mechanics simulation in finite element method for
this research subject

-Enhanced crack models and smart solution techniques required
to achieve a better convergence and performance for the very
brittle behaviour faced in large-scale fracture analysis

e.g. sequentially linear continuum concept (Rots 2002)

‘Necessary future computational investigations are required to
achieve the objectivity of the results together with validation of
the available on-site instrumentation data
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