Computational Methodologies for the Non-linear Analysis of Concrete and Masonry Structures

Flavio Galanti

Overview

- Introduction
 - earthquake engineering problems
 - issues in finite element analysis
- Objectives
- Material models
 - combined damage/plasticity model
 - time dependent damage model
- Analysis methods
 - dynamic analysis
 - static analysis
- Applications and conclusions

Earthquake-resistant design of concrete and masonry structures

• Project motivation:

- contribution to safer building practice in seismic regions
- increased understanding of failure mechanisms in concrete structures and masonry structures using advanced numerical techniques

Examples of failure in masonry

Examples of failure in

Non-linear finite element structural analysis

- Used to determine
 - deformation
 - development of damage
 - load displacement diagram

Difficulties related to F.E. analysis

- Correct prediction of structural response is difficult to obtain
 - numerical problems can be encountered especially beyond peak load
- Current non-linear material models are not complete particularly in the case of masonry
 - good agreement can be obtained only after experimental results are known

Analysis of an infilled r.c. frame

Material modelling issues

- brittle material response
- damage can occur in more than one location
- problem is path dependent and solutions are not necessarily unique

• limited insight into material behaviour and limitations in material model formulation can lead to mathematically ill-posed problems

Solution method

• Discretised problem leads to a set of non-linear equations which needs to be solved at each step of the analysis:

$$f: \mathbb{R}^n \div \mathbb{R}^n$$
 find displacements such that $f = 0$

• System of equations is usually solved using the Newton method or variations thereof

$$J_k s_N = f_k$$

Objectives

- Formulation of material models
 - realistic response in tension, compression etc.
 - better numerical performance
- Formulation of solution methods which avoid the use of Newton iterations

Combined material model: cracking

• Isotropic damage model:

$$\alpha = 1$$
? NET

- linear softening
- ultimate strain

$$\Pi_{,u} = \frac{2G_t}{f_t h}$$

total stress

Crushing

• Quadratic Drucker-Prager model

$$f \bowtie = J_2 + \mathcal{Y}_1 ? k^2$$

• damage

$$Y = Y_0 + \sqrt{\frac{2}{3}AP 6AP}$$

Combined model response

• material with $f_t=1$ MPa; $f_c=10$ MPa

Rate dependent damage model

• Based on the elastic damage model

$$\alpha = 1$$
? NETI

– damage rate law:

$$\frac{d\delta}{dt} = c \left\langle \frac{\varepsilon}{\varepsilon_t} - 1 \right\rangle^a \left(1 - \delta \right)^b$$

Solution procedures

- Method which avoid use of Newton iterations
- Dynamic problems
 - predictor-corrector methods for problems described by ordinary differential equations with given initial conditions, e.g. Newmark's method, central difference method (explicit)
- Static problems
 - dynamic relaxation method

Static solution

- Dynamic relaxation: introduces damping to make a transient explicit dynamic analysis converge to the static solution.
- Modified dynamic relaxation method for static analysis:
 - no damping required
 - velocity of system set
 to zero at moments
 when the absolute
 acceleration of the
 system has reached
 a minimum

Problems considered

- Bar under tension to study problem of mesh independence
- Masonry panels under
 - tension
 - compression
 - horizontal loading
- Infilled r.c. frames

Conclusions

- Explicit dynamic analysis
 - requires no solution of non-linear equations
 - delivers results where other methods fail
 - allows a direct evaluation of material model performance
 - allows a simplification of the programming
- Additional DR type procedure can be used for a static analysis
 - automatic
 - delivers results similar to those obtainable with the Newton method with constant initial stiffness
 - some issues related to convergence speed and accuracy remain

Conclusions, continued

Material models

- marked interaction between cracking and crushing failure modes
- shear behaviour has a great influence on the calculated global response
- rate dependent model is superior to rate independent model in achieving mesh objective results

Possible future developments

- Solution methods
 - improvement of speed and accuracy
 - adaptive procedures
- Material models
 - comparison with experiments
 - calibration of model parameters
 - introduction of damping