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ABSTRACT: The coupling of software for visualization and/or pattern recognition with 
software for process modeling may be considered as one of the most challenging tasks for the 
future. Many visualization packages are based on tetrahedral meshes. In principle, such 
meshes offer also a good basis for numerical process modeling, like simulation of porous 
media flow and geomechanic phenomena. For porous media flow we have developed our own 
finite element software with upper and lower bound modules to assess error bounds. 
Numerical examples related to homogenization will exemplify the theory. 
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1. INTRODUCTION 
The coupling of software for visualization and/or pattern recognition with software for 
process modeling may be considered as one of the most challenging tasks. Many visualization 
packages are based on tetrahedral cell-complexes (Paoluzzi et al., 1993). In principle, 
tetrahedral complexes offer also a good basis for numerical simulation of porous media flow 
and geomechanic phenomena, especially when grid refinements are important. One of the 
complications of such a coupling is the difference in scale between the resolution of 
visualization tools and that of process modeling software. To handle this mismatch, we have 
developed numerical methods to homogenize the process parameters absolute and relative 
permeability, capillary pressure, rigidity and creep viscosity. For the numerical 
homogenization of porous media we have developed our own finite element software. Both 
upper and lower bound methods have been developed to assess a posteriori error bounds. 
Since the software is based on tetrahedral cell-complexes upon which discrete analogs of the 
flow equations are solved, we may see the numerical homogenization from a broader 
perspective, namely as an exemplification of the more general problem of coupling 
visualization software with process simulation software.  

We present an outline of finite element methods borrowing from ideas originally 
developed in computational electromagnetism [Bossavit, 1998]. Since this line of thought is 
very appealing and adequate for our purpose, we consider it worthwhile to introduce it in the 
geosciences. As ‘first principles’ we consider two equations: the ‘div-side’ equation for the 
scalar potential (pressure, piezometric head) and the ‘curl-side’ equation for the vector 
potential (stream function). This way it is possible to locate Nawalany’s ‘velocity oriented 
approach’ [Nawalany, 1986; Zijl and Nawalany, 1993] in the context of mainstream finite 
elements. It will turn out that all finite element methods based on the curl-side equation are 
‘velocity oriented’, thus countering the most important argument for choosing finite 
difference models (Modflow, Eclipse) instead of finite element models. The classical 
conformal-nodal finite element method (CN-FEM) for the scalar potential in porous media 
flow is well known [Strang and Fix, 1973]; the node-based method for the displacement is its 
analog in geomechanics [Zienkewicz and Taylor, 1967]. Such methods are upper bound 
methods; they over-estimate the homogenized mobility (in porous media flow), rigidity (in 
elasticity) or viscosity (in creep flow). The mixed-hybrid finite element method (MH-FEM) is 
less popular, but belongs nevertheless to the standard methods nowadays [Brezzi and Fortin, 
1991; Chavent and Jaffré, 1986; Kaasschieter and Huijben, 1992; Raviart and Thomas, 1977; 
Trykozko et al., 2001; Weiser and Wheeler, 1988]. One of its most important features is its 
lower bound property. Supposing that CN-FEM is well known, MH-FEM will be introduced 
here in a more ‘physical’ way than in the standard literature, by basing it on the relatively new 



 2

edge element method for the vector potential. Bilateral error bounds have been described by 
Trykozko, Zijl and Bossavit [2001]. 
 
2. CELL COMPLEXES AND THEIR PROPERTIES 
Topology is concerned with properties that endure when geometrical figures are transformed 
continuously. Metrical properties like distances between points may change, but the number 
of points and their relative orientations may not. As an illustration, let us consider 4D space-
time. It is known from the theory of general relativity that its metric is dependent on the 
presence of matter. However, it is still an open question whether its topology is matter-
dependent too. As Goedel has pointed out and has been affirmed by Einstein, a matter-
dependent topology allows one to travel into temporal regions of the universe that have 
already been passed. In this paper we adopt Whitehead’s topological priority above matter 
and accept that the universe’s events cannot be repeated [Tanaka, 1985]. As a consequence, 
we accept ‘the arrow of time’ 0t  in handling time-dependent process equations.  

A cell is one of the simplest topological objects; it is any figure that is topologically 
equivalent to a ball. The topological properties of the ball are: (i) it is one piece (any attempt 
to divide the ball into more than one piece would require cutting, and that is forbidden in 
continuous transformations), and (ii) it neither loops (i.e., it is not torus-like) nor holes (i.e., it 
has one boundary) [Henle, 1979]. Here we will consider cells that may be glued and pasted 
together along their faces. This way we form simplicial cell-complexes (in 3D simplices are 
points, straight lines, flat faces and volumes). In principle, the simplicial cell-complex may be 
built up by any regular polyhedron, but we limit our discussion to tetrahedral cell-complexes, 
since they are used in many visualization packages and form a the simplest possible mesh in 
finite element methods. However, the cube is important too, since it forms the ‘grid-blocks’ in 
the popular control volume finite difference method.  

Let us first, as an example, consider a cell-complex set up as a division of the modeling 
domain into N  cubes that are divided into five tetrahedrons. The modeling domain is 
assumed to a cube too, so it is possible to assume periodicity: i.e., we count equivalent nodes 
on two opposite boundaries only once. Then there are N  ‘active nodes’ and NT 5  
tetrahedrons. Since there are four faces for each tetrahedron, shared by two, there are 

NF 10  active faces (triangles). Finally, from the Euler-Poincaré formula 
 TFEN , where 1  for simply connected domains [Weintraub, 1977], it 

follows that there are 16  NE  active edges [Henle, 1979; Bossavit, 1998]. In a similar 
way, we can derive that a division of the cubes into six tetrahedrons leads to  NT 6 , 

NF 12  and 17  NE . Looking at these numbers, the first thought that jumps to the 
mind is that numerical models that based on nodes as degrees of freedom (i.e., CN-FEM) 
perform cheapest with respect to computer time and memory. The second-cheapest methods 
are based on edges, while the most expensive methods are based on faces (i.e., MH-FEM). 
Other factors also influence the numerical efficiency, but this tendency holds. Of course, 
tetrahedral cell-complexes may have a much more general and ‘irregular’ character. For 
instance, they may be obtained from alpha complexes, which have originally been developed 
for visualization and pattern recognition [Gerritsen et al., 2001a, 2001b]. 

In our novel approach to process modeling, incidence and orientation are very important 
notions. Each edge has a ‘forward direction’, each face has a notion of ‘turning clockwise’, 
each tetrahedron has its own ‘corkscrew rule’, and even nodes are oriented, which consists  in 
attributing a sign, + or , to each of them (Paoluzzi, 1993). We assign to two simplices   and 
s  of respectively dimensions d  and 1d  an incidence number: 1  if   is a face of s  and 
0 otherwise. The sign, + or , depends on whether orientations match or not. Collecting the 
incidence numbers in arrays, we obtain three matrices: (i) the FT   matrix D , (ii) the 

EF   matrix R  and (iii) the NE  matrix G  [Henle, 1979; Bossavit, 1998]. These 

incidence matrices have a very appealing meaning: D , R , G  are the discrete counterparts 
of the spatial differential operators div, rot, grad upon which the process models are based. 
Indeed, for topological ‘balls’ 0  R D   and 0 G  R  , which are the discrete analogs of the 
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well-known relations 0).div(rot   and 0).grad(rot  . However, in contrast to the partial 
differential operators, the incidence matrices are metric-free, they depend only on the 
topology of the cell-complex, which is a major advantage regarding our assumed topological 
priority over matter. 

Finally, in process modeling, duality of meshes plays an important role. For a tetrahedral 
primal mesh, the dual mesh dual is such that that the barycenters of the tetrahedrons of the 
primal mesh correspond with the nodes of the dual mesh, while the faces (triangles) of the 
primal mesh correspond with the edges of the dual mesh, and so on. More specifically, a dual 
edge e


 belonging to primal face f  is the union of the two line segments that join the 

barycenter of that face with the two barycenters of the tetrahedrons flanking that face. To be 
sure, the dual mesh is not a simplicial mesh, since the edges are broken lines (Fig. 4.5 from 
Bossavit, 1998).  
 
3. PARADIGMATIC EQUATIONS  
We exemplify our line of thought using the following equations as paradigmatic ‘first 
principles’ 

0) grad(div   in C .               (1) 

0)rot (rot 1  a  in C .               (2) 

Both (1) and (2) describe steady single-phase fluid flow in a domain C  filled with porous 
material. ‘Div-side’ equation (1) is well known in groundwater hydrology and petroleum 
reservoir engineering. Although ‘curl-side’ equation (2) is well known in the theory of 
electromagnetism (Maxwell presented his famous equations using a vector potential 
[Bossavit, 1998]), this equation is hardly known in the context of porous media flow. It is our 
strong conviction that (2) is extremely useful. Therefore we will focus on (2), while 

supposing that (1) and its discrete analogs are well known. Here   { 112 .sPa.m  } is the 

mobility tensor (the intrinsic permeability divided by the viscosity),   { Pa } is the (scalar) 

potential, and a  { 12 s.m  } is the vector potential.  
The (scalar) potential is the fluid pressure minus the hydrostatic pressure. Consider 

groundwater with a density of 3kg.m 1000   in a gravitational field of 2m.s 10  , then a 

piezometric height of m 1  corresponds with a water pressure of Pa 10,000dbar 1  . In other 
words, we may equate the numerical value of the piezometric head to that of the potential 
expressed in decibar. Similarly, we may equate the mobility to the hydraulic conductivity. 
However, for oil, which has a different density, this ‘trick’ is no longer allowed.  

In contrast to what is generally believed, the vector potential has a physical meaning too. 
In a plane normal to the its direction, its absolute value times a metric coefficient is the stream 
function. However, we will not go deeper into this interpretations here. The flux density 

{ 1m.s } (the specific discharge) is given by   gradrot aq . 

Equations (1) and (2) can easily be extended to steady multi-phase flow. In the numerical 
examples we focus on two-phase flow [Zijl and Trykozko, 2001b]. Extensions to elastic 
geomechanics and creep of viscous rock layers are possible too.  

Although (1) and (2) are mathematically equivalent, their discrete analogs are not. This 
gives rise to two different numerical approximation methods, which can be used to establish 
error bounds. Numerical examples of the error bounds will be presented below, while for the 
theory reference is made to Trykozko, Zijl and Bossavit [2001]. 
 
4. DISCRETE ANALOGS OF THE PARADIGMATIC EQUATIONS 
4.1. The curl side 
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We assign to each face f  of the tetrahedral primal mesh a flux  
f ff dSqq  

{ 13 day.m  } through that face. Let us denote by q  the array of face-based fluxes and 
consider the following linear system 

0  q D  .                    (3)  

System (3) is equivalent with 0 f fq , where the summation is over the four faces of a 

tetrahedron. Hence (3) expresses mass conservation for each tetrahedron.  

We assign a potential difference  
e ef dhh 

 


 { dbar } along each dual edge e


.  Let 

h  be the column array of face-based potential differences, then the system 

0h  R T                     (4) 

is equivalent with 0e fh , which means that the circulation of h  is zero along the edges 

of a dual face, from which it follows that   gradh  along the edges of each dual face.  
Equations (3) and (4) are metric-free; only the topology of the mesh matters. The metric 

comes in by the discrete analog of Darcy’s law 
h L  q  .                    (5) 

The square FF   matrix L  { 113 .sPa.m  } may be constructed by a control volume finite 
difference approach [Bossavit, 1999], but in the context of finite elements L  is obtained by 
the Galerkin approach [Bossavit, 1998] 

  

C jiij dVww 11][L ,              (6) 

where the mobility   is tetrahedron-wise constant. The vector function fw  is defined as 

)gradgradgradgradgradgrad(2 mnnmnmf wwwwwwwwww   ,  (7)  

where face f  is oriented from node   via node m  to node n .  Scalar function nw  is the 

well-known continuous piecewise linear ‘hat’ function that is equal to 1 at node n  and 0 at 
other nodes. Since the mobility   is a symmetric and strictly positive definite tensor, the 

matrix L  is also symmetric and strictly positive definite. 
Combination of (4) and (5) using (6) leads to the algebraic system 

0 q L R 1 T .                  (8) 

To transform the above system to a solvable EE   system, the relation 0  R D   is 
invoked. Writing this relation written as 0  a) (R D  , and recalling that 0  q D  , suggests to 

introduce an array a  of edge-based degrees of freedom ea  such that a R  q  . Indeed, this 

way we obtain the discrete analog of aq rot . Here  
e ee daa   { 13 day.m  } is the 

tangential component of the vector potential integrated over primal edge e . Moreover, 

 e ef aq , i.e., the circulation of a  along the edges of a primal face is equal to the flux 

through that face. This finally leads to the algebraic system 

0 a R L R 1 T ,                  (9) 

of which the EE   matrix R L R 1T  is sparse and symmetric. System (9) is the discrete 
analog of (2).  

Since in (1) and (9) there is no requirement for a div , physical boundary conditions can 
easily be inserted [Bossavit, 1998]. The resulting system has a positive semi-definite matrix 
with null space containing the range of G  (i.e., the solution a  is unique up to an arbitrary 

function fgrad ). This system can be solved by a conventional preconditioned conjugate 
gradient method [Bossavit, 1998; Kaasschieter, 1988; Meijerink and Van der Vorst, 1977].  
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4.2. The div side 
Using a similar line of thought, the discrete analog of (1) yields the system of equations 

0pG  L G ** T ,                  (10)  

where *p  is the array of node-based scalar potentials and ij][L*  = dVww ji 
C

, 

mnnme wwwww  grad grad  , is the well-known NN   system matrix that belongs to the 
‘classical’ conformal-nodal finite element method (CN-FEM) [Strang and Fix, 1997; 

Zienkewicz and Taylor, 1967]. Note that TG  is the discrete analog of the divergence in the 

dual mesh. In other words, system (10) is equivalent with 0 f fq  ; the summation is over 

the faces f


 of a dual volume. Hence (10) expresses mass conservation for each dual volume 
(Figure 4.5 from Bossavit, 1998).  

Systems (9) and (10) are complementary in the sense that system (9) gives lower bounds 
for the eigenvalues of the numerically approximated coarse-scale mobility, while system (10) 
gives upper bounds [Trykozko, Zijl and Bossavit, 2001]. 
 
5. DISCRETE FLUX-BASED PROCESS MODELS 

Edge elements for the vector potential are used in computational electromagnetics, 
because in that branch of science the vector potential is generally accepted as a quantity with 
‘physical meaning’. However, when considering computational porous media flow (as well as 
computational geomechanics), the flux densities (the tractions in geomechanics) are 
considered as the standard alternative to the ‘classical’ potentials (pressures, piezometric 
heads). Moreover, node elements have a long history and are, therefore, well established. 
Edge elements are relatively new and have not (yet) penetrated into the earth sciences. 
Therefore, it has been considered in the past as worth while to develop node-based methods 
for the flux density.  

The simplest idea that jumps to the mind is to derive ‘div-side’ equations for the flux 
density. Taking the curl of (2) and using the relation ) . div(grad) . grad(div) .rot(rot   

yields 0) grad() graddiv() grad (div 111   qqq iii  for any isotropic medium. 

If we assume perfect layering, e.g., )(z , we find an equation for zq  that has the same 
baffling simplicity as (1)  

0) grad(div 1  zq  in C .              (11a) 
Again assuming that the medium is perfectly layered, taking the x  and y  derivative of 

(1) yields 
0) grad(div  xh , 0) grad(div  yh  in C ,        (11b,c) 

Equations (11b,c) are a special case of div-side equation (1), while (11a) is a special case of 
curl-side equation (2) in div-side disguise. The numerical solution of these equations leads 
automatically to complementary algebraic systems and, hence, to a posteriori error bounds. 
Instead of solving the relatively complicated equations (1), (2), the much simpler task of 
solving their equivalents (11) by well established node-based finite elements has been 
accomplished by Nawalany [1986], who obtained extremely accurate solutions using the 
software he developed. In addition, (11) has formed the basis of practical engineering results 
regarding the calculation of vertical flux densities from solutions to the Dupuit approximation 
in aquifers, as well as regarding the upscaling to aquifer transmissivities [Zijl and Nawalany, 
1993]. Despite these successes, we have to consider the ‘mother equations’ (1), (2) if we are 
interested in more general mobility patterns. 

The mixed-hybrid finite element method (MH-FEM) is an alternative curl-side method 

that is not based on the vector potential. Using the identity 0DR TT  – the discrete analog of 

0) . rot(grad   in the dual mesh – (4) yields 

p D h T ,                    (12)  
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where p  is the array of discrete scalar potentials tp  at the dual nodes (the barycenters of the 
tetrahedrons). This way, equations (3) and (5) yield the mixed system [Trykozko, Zijl and 
Bossavit, 2001] 

 























 

0

0

p

q

0D

DL 1 T

                (13) 

Left multiplying the upper equations of (13) by TR  and using (4) and (12) yields (8) and, 

hence, (9). Moreover, since the null space of TR  is the range of TD , the inverse procedure, 
starting with (8) and ending up with (13), is possible too. Hence, the two systems (9) and (13) 
are algebraically equivalent. Since it is relatively simple to prove the convergence of (9), the 
algebraic equivalence is a much simpler proof of convergence of the mixed (and mixed-
hybrid, see below) method than presented in the literature [Bossavit, 1998]. 

Since mixed system (13) has poor algebraic properties, the now classical move to the 
mixed-hybrid approach has been applied. Hybridization of (13) has been described 
extensively in the literature [Chavent and Jaffré, 1986; Kaasschieter and Huijben, 1992; 
Raviart and Thomas, 1977; Trykozko et al., 2001; Weiser and Wheeler, 1988]. The procedure 
is only briefly summarized here. First we double q  and h  such that there are two distinct 

values on the sides of each face. This leads to a redefinition of q , h , L , D , R , etc., 

denoted here as q , h , L , D , R  . This step may be considered as a domain 

decomposition technique for each tetrahedron. Now the constraint 0q M   expresses the 

continuity of normal fluxes on all faces, where matrix M  has a very simple structure. The 
constraints are introduced using a face-based Lagrange multiplier array  . The Lagrange 
multiplier of each face represents the potential difference between the two adjacent dual 
nodes. Although the meaning of q , h , etc., has changed, this yields a new, but algebraically 
equivalent version of (9) and (13)  
































 



















 

0

0

0

p

q

00M

00D

MDL 1



TT

.             (14) 

Since L  is block-diagonal, q  can easily be eliminated. This way we end up with a 

symmetric system in terms of p  and  . Eliminating p  we finally find an FF   system in 

terms of only   

0M ]LD  DLL[ M 1   TT ,             (15) 

where TD L D   [Kaasschieter and Huijben, 1992, Trykozko et al., 2001]. System (15) 
may be considered as a preconditioned version of the algebraically equivalent systems (9), 
(13) and (14). If mobility tensor   is diagonal, the matrix   is also diagonal. This 

observation has lead to the famous proof that block-centered finite differences are nothing but 
a special case of mixed-hybrid finite elements [Weiser and Wheeler, 1988].  

 
6. NUMERICAL EXAMPLE: HOMOGENISATION OF FLOW PARAMETERS 

Let us consider an isotropic porous medium with absolute permeability )(xk  = 310)(  x  
2m  ( 2m1  = 1013.250 mD), where  zyx ,,  = 18 zyx 222 coshcoscosh  in the 

domain x , y , z . Outside this domain the function )(x  is continued 

periodically. The factor   = )2sinh( 2
1   )2sin( 2

1   )2sinh( 2
1   is such that 

1  and  1  =   tanhtantanh)(8 21 . In the examples we have chosen 

50/49  and 100/49 . 
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The water has viscosity 4
1 105   Pa.s = 0.5 cp, while the oil has viscosity 

2
2 105   Pa.s = 50 cp. The relative permeabilities are ))(()( )(2

10
1)(2

13
2

11
xxssr    and 

))(()( )(2
5
1)(2

27
8

22
xxssr   . The capillary pressure is given by 01 /),( psxp  = 

)()14/)209tan(( 1 xdsb   ( 0p  = 1 kPa = 0.1450377 psi) where either 0b  and d  is 

constant (the no-capillary gradient case) or 1b  and 2/)(5)( 1 xxd  (the saturation-
dependent capillary case). The admissible interval for the water saturation is 

5/410/1 1  s ; the residual oil saturation is 1/5 and the maximum oil saturation is 9/10. In 

this example the exact coarse-scale absolute permeability K  is given by the diagonal matrix 

),,(diag zzyyxx KKK  = 310),,(diag zyx FFF -1-12 s.Pa.m , where 

)/(coth2 2
2sinh2 xF , )/(cot2 2

2sin2 yF  and )/(coth2 2
2sinh2 zF  

[Trykozko et al., 2001; Zijl and Trykozko, 2001a]. In the finite element analogs, where the 
fine-scale mobility is tetrahedron-wise constant, we assign to each tetrahedron the fine-scale 
mobility using the above expressions in its barycenter.  

To perform the numerical experiments, the following nine values of   have been 
specified: 0.0001, 0.0003, 0.001, 0.01, 0.1, 1, 10, 100, 300. The bisection method [Press et al., 

1986] is used with termination criterion 8
1122 10)(/)( srsr  yielding the coarse-scale 

saturations s  for each specified   from which the corresponding mobilities are calculated. 

To solve the saturation-dependent capillary case, the saturations obtained from the no-
capillary-gradient case have been chosen as initial values for the successive iteration 
procedure. The results obtained for the saturation-dependent capillary pressure are shown in 
Figures 1—3. Only values obtained with CN-FEM are reported.  
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Figure 1. Coarse-scale water saturation S1 vs. coarse-scale capillary pressure P. 
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Water mobilities vs. saturation S1,
saturation-dependent capillary
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Figure 2. Coarse-scale water mobilities w
ij  vs. coarse-scale water saturation S1. 

 

Oil mobilities vs. saturation S2,
saturation-dependent capillary
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Fig. 3. Coarse-scale oil mobilities o
ij  vs. coarse-scale oil saturation S2. 

 
Since we have access to two algebraically different approximation methods, there is a 

temptation to compare their behavior. Thus, a set of computational experiments has been 
performed aiming to study the two approximate solutions. Only the parameter value 1.0  
has been chosen for that purpose. The computations were performed for a sequence of 
uniformly refined meshes. The results are summarized in Figures 4—7. 
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 Capillary pressure 
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Figure 4. Coarse-scale capillary pressure vs. number of active nodes. 
 

Coarse-scale saturation
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Figure 5. Coarse-scale water saturation vs. number of active nodes. 
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Coarse-scale water mobilities, 
saturation-dependent capillary
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Figure 6. Saturation-dependent capillary: coarse-scale water mobilities w
xx  vs. number of 

active nodes. 
 

Coarse-scale water mobilities,
saturation dependent capillary
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Figure 7. Saturation-dependent capillary: coarse-scale water mobilities w
yy  vs. number of 

active nodes. 
 
The two methods provide solutions that are very close to each other. In general, the 
differences in the yy component between two solutions are greater. This is due to the form of 
the fine-scale absolute permeability, which is steeply descending to zero near the y-
boundaries. 

The function describing the fine-scale absolute permeability is continuous, while the two 
finite-element methods use tetrahedron-wise constant fine-scale mobility values. Hence, for 
each mesh in the sequence of meshes used in the computations another discrete problem is 
derived from the continuous problem. For each problem in the sequence of discrete problems, 
the CN-FEM and MH-FEM solutions represent respectively the upper and lower bounds, 
although the CN-FEM and MH-FEM solutions presented do not bound the exact solution of 
the continuous problem.  
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7. SUMMARY AND CONCLUSIONS 
We have shown that tetrahedral cell-complexes are not only useful for visualization and 
pattern recognition, but also for process modeling. The essential step from cell-complexes to 
process simulations is the application of the equivalence between the three incidence matrices 
of a cell-complex with the three spatial differential operators from process models. 
Considering two mathematically equivalent process equations – the ‘div-side’ and the ‘curl-
side’ equation – as ‘first principles’, we were able to derive the well-known conformal-nodal 
finite element method (CN-FEM), as well as a realm of algebraically equivalent 
complementary finite element methods, which are not algebraically equivalent with CN-FEM. 
The mixed-hybrid finite element method (MH-FEM) is the most popular complementary 
method, but the newer edge element method seems very promising and deserves further 
research. Arguments are given showing that CN-FEM combined with edge elements may be 
considered as a generalization of Nawalany and Zijl’s velocity-oriented finite elements. The 
div-side equations have been solved numerically to determine upper bounds, while the ‘curl 
side’ equations have been used to compute lower bounds. Homogenization of two-phase flow 
parameters has been chosen as a numerical example.  

For future R&D we recommend to build relatively simple, hence fast, process models in 
the software for visualization and pattern recognition. If this latter software is based on 
tetrahedral cell-complexes, this can easily be accomplished using the incidence matrices and 
(6). To make the models fast, data reduction by numerical homogenization is proposed.   
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