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Setting the scene

Result:
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Project objectives

Parameters identification of continuum damage models:

Study of the aspects related to the solution of the inverse problem:
Uniqueness and robustness of the solution (well-posedness of the 
inverse problem)
Factors of influence for the solution (e.g. experimental uncertainty, initial 
guess)
Qualitative and quantitative choice of the experimental data

Study of the aspects related to the choice of the inverse technique 
(best strategy)

Effectiveness (how close to the solution)
Efficiency (time)
Reliability
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Project objectives

Insight in the calibrated numerical  model:

solving the inverse problem needs insight in the forward problem, 
otherwise it reduces to mere data fitting 

solving the inverse problem helps to have insight in the forward 
problem (e.g. length scale)

Investigation of the limitations of applicability, reliability and 
predictive capabilities of the calibrated numerical  model (size effect 
and geometry effect)



8

Project objectives

Study of the problem of objectively extracting intrinsic 
material properties from structural experimental responses:

Numerical model is an approximation of the reality 
many external factors that play a role in the laboratory tests are difficult to 
be identified, quantified and included in the model 
acting only on the model parameters may not be sufficient to cover the 
approximation 
consequence: not constant material parameters.

Possible dependency of the material parameters from 
structural factors: the boundary conditions, the load conditions, the 
specimen size and geometry
environmental and manufacturing factors
time and/or deformation state

Inverse problem only valid tool to link local law at the material point 
level with structural response



9

The numerical model (forward problem)
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Gradient-enhanced continuum damage model

gradient parameter
(related to length scale)

[E, , , , , , ]T
i cν κ α β η=x

elastic
parameters

damage threshold

softening curve
parameters

tensile-compressive strength ratio

Simplification: [ , , ]T cα β=x
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The Inverse Problem

Minimization of an objective function
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The Inverse Problem

Definition of the objective function 
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The inverse techniques

KNN method

Kalman filter method
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ˆ min ( )f=
x

x x

evaluation of the weighted Euclidean distance f(xi)

choose x that corresponds to the nearest neighbor of yexp (K=1)

compute (forward problem) ycomp(xi)

K-Nearest Neighbors method (KNN)

choose a population of model parameters sets xi (creation of a grid)
c

β
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Kalman Filter method (KF)

Global iterations for non linear forward operator
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The inverse techniques

KNN method
Derivative free method
General overview in the parameters space
Estimation of the initial guess
Parallel solutions of the forward problem
easily usable for any numerical model (external tool)

Kalman filter method
Refine the searching process
Parameters update during fracture process
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Experimental data 1

Tensile size effect tests on dog-bone shaped specimens by van Vliet
and van Mier (2000)



17

Experimental data 2

Tensile Size Effect Tests (different concrete mixes) by K. Hariri (2000)
Three point bending tests (BG) on single-edge-notched concrete beams
Uniaxial tensile tests (KG) on double-notched concrete prisms
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Experimental data 2

Experimental available results:

Speckle Interferometry for the FPZ-size evaluation
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Global curve one single size

Size effect curve (only peaks)

Global + local curve one single size

Global curves different sizes

Global + local curves different sizes

Objective of the fitting

Global + local curves different sizes and geometry
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Global curve one single size
Ill-posed inverse problem:

not unique parameters set

c and β correlated

Results
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Results

Global + local curve one single size
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Results

Single parameters set identified

Fitting of other sizes curves not guarantied
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Results

Size effect curve (only peaks)
Different parameter sets could give “good” average fitting

Fitting of the entire global curves not guarantied 

No unique parameters set reproduces the real size effect curve (statistical    
effects not captured by the deterministic model)

The length scale may be used as tuner parameter.
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Results

Global curves different sizes

Different parameter sets could give “good” average fitting. 

No unique parameters set reproduces the real size effect curve

The length scale may be used as tuner parameter.
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Global + local curves different sizes
Single parameters set may be identified.

No unique parameters set reproduces the real size effect curve.

The length scale may be used as tuner parameter.

Results
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Results: no unique parameters set reproduces the real size effect curve.

BG specimens
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Results: fitting only the peaks ≠ fitting the entire global curves

BG specimens
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Results: the length scale may be used as tuner parameter

BG specimens
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Results

Global + local curves different sizes and geometry

Structural effect

BG specimens
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BG specimens
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KNN method to identify the best glob for each size.
Parameters identification procedure (for β and c):

Find the best fixed c for each better β (the best 
representative of each “fixed β” population)

Conclusions (parameters identification strategy)

How the 
objective has 
to be fitted?

Use the cs of step for that fixed β
(use c as tuner parameter)

“average” global 
fitting through all the 
sizes is satisfactory?

No

Yes

Simply looking 
in the KNN
matrix

Find the best [c,β] set considering the local 
curves (priority of fitting to the glob curves)

Stop

Find the better fixed βs (better representatives of the 
“best glob” population)
Find for each better β the best c for each size.
(peaks below the computational curve of a fixed [β c] 
couple have smaller c and vice versa)

Stop

“average” global 
fitting through all the 
sizes is satisfactory?

No

Yes

Go back to for another 
[c,β] couple

Use the best 
glob of step 

KF on one par set for all 
the sizes

KF on c for each size

KF on c and β for each size

Penalty of not a 
unique c

Penalty of not 
fitting local data

Penalty of 
not unique β
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Conclusions (Hariri tests: global overview)

Average fitting of the global size 
effect obtained by one single set 
with c toward the smallest value.

Detailed fitting of the global 
size effect varying c

Spread of the parameters sets 
to obtain the best fitting of the
local size effect.

Best individuals at borders!!!

Structural effect on the model 
parameters.

May parameters identification, 
solved as inverse problem, 
completely substitute 
investigation at micro or meso-
scale?
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Additional slide 1


