

Netherlands Institute for Metals Research

Plooi van slanke aluminium profielen bij brand

Johan Maljaars

6-11-07

DOV

1

Aluminium en brand

- Aluminium zeer gevoelig voor brand (sterkteteruggang tussen 150 en 350 °C)
- Toepassingen

Onderzoeksvraag

Onderzoeksfocus: plooi Trekproeven / kruipproeven Drukproeven Material Model FEM design model 6-11-07 DOV 3

Inhoud

- Belang van kruip en kruipmodel
- Materiaalproeven voor brand
- Implementatie in DIANA
- Drukproeven op slanke profielen
- Validatie DIANA model
- Conclusions

Belang van kruip

- Kruip van aluminium bij kamertemp. Verwaarloosbaar
- Kruip bij verhoogde temp (>1/2 T_m = 150 °C) zeer dominant
- Verhoogde temp: Totale rek =

 $\mathcal{E} = \mathcal{E}_{th} + \mathcal{E}_{el} + \mathcal{E}_t$

Kruipmodel

- 1. Bestaand kruipmodel
- 2. Parameter calibratie alu alloys (kruipproeven)

- 3. Model uitbreiding voor prim. and tert. kruip
- 4. Toepassing en validatie voor toenemende temperature

Type materiaalproeven

Steady-state

Transient state

Resultaat materiaalproeven I

Resultaat materiaalproeven II

DIANA: User Supplied Subroutine

- Uitbreiding multiaxiaal (Von Mises)
- Subroutine geeft $\delta \varepsilon_{ij}$ en vraagt om σ_{ij} en de tangent stijfheidsmatrix
- Model: $d\varepsilon/dt$ als functie van σ , T, t
- Iteratief bepalen van σ_{ii}
- Numerieke stijfheidsmatrix

$$\frac{d\sigma}{d\varepsilon} \approx \frac{\sigma - \sigma_{err}}{\varepsilon - \varepsilon_{err}} = \frac{\sigma - \sigma_{err}}{\Delta \varepsilon - \Delta \varepsilon_{err}}$$

Typen drukproeven

Typen secties

11

Opstelling

Kruip

Drukproeve

Metingen

Geometrie Imperfecties Restspanningen

Steady state drukproeven

Trekproeven DIANA Drukproeven Validatie Conclusies

Kruip

Transient state drukproeven

Validatie FEM model steadystate

16

Validatie FEM model transient state

Validatie FEM model

Vervormde proefstukken en modellen

Conclusies

- Materiaal model ontwikkeld, t, T, σ afhankelijk
- Materiaal model ingebracht in DIANA
- FE modellen voor local buckling van alu bij brand gevalideerd
- Alu minder gevoelig voor plooi bij brand