

	Crack width	I
	arthur m	
Cracks	5 > 0,1 mm at 75% of ultima	te load
Cracks	s > 0,1 mm at 75% of ultima	te load At bottom side [mm]
Cracks At 75% of ultimate load Crack width in simulation	5 > 0,1 mm at 75% of ultima In web [mm] 0,35 – 0,55	te load At bottom side [mm] 0,25 – 0,35
Cracks At 75% of ultimate load Crack width in simulation Crack width in test	5 > 0,1 mm at 75% of ultima 0,35 - 0,55 0,05 - 0,15	te load At bottom side [mm] 0,25 - 0,35 0,20
Cracks At 75% of ultimate load Crack width in simulation Crack width in test Crack spacing in simulation	5 > 0,1 mm at 75% of ultima 0,35 – 0,55 0,05 – 0,15 100	te load At bottom side [mm] 0,25 – 0,35 0,20 200

Choices

- Mid-beam versus edge beam: same load, transverse bending
- Upper flange not critical \rightarrow no empty ducts included
- Non-uniform loading by loading device not considered
- Effect of:
 - Concrete strength 10% lower \rightarrow P_u 3% lower
 - Prestress level 10% lower \rightarrow P_u not lower
 - Yield stress steel Nominal instead of average \rightarrow P_u 1,5% lower
 - Element size $50 \text{ mm} \rightarrow 100 \text{ mm} \rightarrow P_u 1,7\%$ lower
- Ultimate load:
 - Minimum estimated as 3% lower based on effect of variations

9

NLFEA Guidelines (1)

General

- Guidelines meant for assessment of structures, not for estimating real strength
- Real SLS much lower than 75% of real strength
- Materials
 - Here average instead of characteristic values
 - In ATENA concrete properties connected to cube strength
 - Material models in ATENA comply with Guidelines
- Analysis
 - Calculation methods in ATENA comply with Guidelines
 - Convergence criteria in ATENA comply with Guidelines

- NLFEA is an important tool for structural analysis
- Validation of models is important
- Guidelines may contribute to reduction of scatter
- An International Contest provides an inspiring platform to show the state-of-the -art

