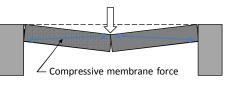


Background


- Research into Reserve Capacity of Dutch Concrete Bridges
 - Shear capacity of beams and slabs without shear reinforcement (Yang, Lantsoght)
 - Long-term loading effect on shear capacity (Sarkhosh)
 - Use of NLFEA for load capacity evaluation
 - Compressive membrane action in prestressed concrete deck slabs (Amir)

Evaluation of load capacity with NLFEA

- Workshop at start → large scatter in results of tests with shear failure
- Benchmark studies of experiments in literature (ATENA and DIANA)
- Guidelines for Nonlinear Finite Element Analysis of Concrete Structures.
 Scope: Girder Members (RTD 1016:2012)
- International Contest: does Guidelines result in reduction of scatter?

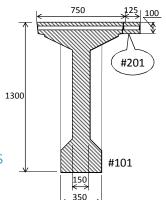
International Contest (1)

- Tests compressive membrane action
 - Scale 1:2 of existing bridge structure
 - 4 prefabricated beams with cast in situ prestressed deck slabs
 - After punching tests, deck slabs removed
 - 3-point-bending tests on beams

International Contest (2)

Girders

- Dimensions


- Length 12 m, depth 1,3 m
- #101 symmetric, #201 asymmetric
- Empty ducts in upper flange

Materials

- Concrete cube strength
 - At prestress release 54 MPa
 - At testing 90 MPa
- Ribbed bars nominal B500
- Prestressing strand nominal Y1860S

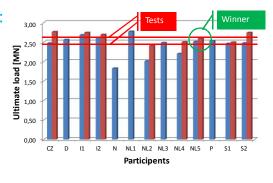
Prestress

- Cable force before release given
- Effective prestress to be estimated

International Contest (3)

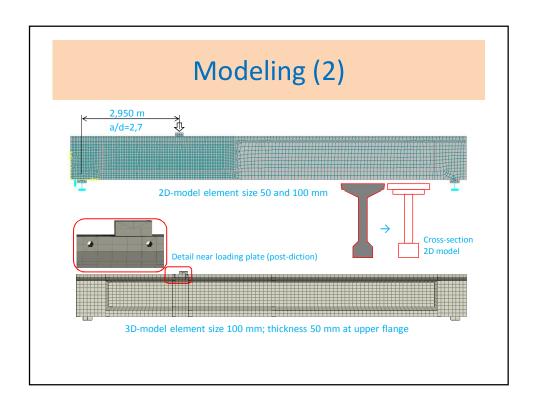
Questions

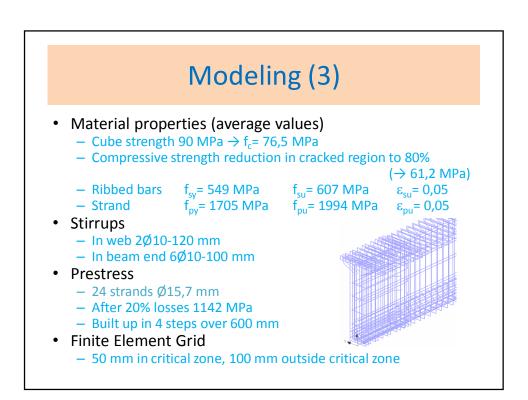
- Maximum (and minimum) load at failure
- Failure mechanism
- Crack pattern at 75% and at 100% of failure load
- Crack width at 75% of failure load
- Load-displacement diagram


Guidelines should be followed

- Modeling: Materials, FE's, Prestressing, Existing cracks, Loads, Boundary conditions
- Analysis, Limit State Verification, Reporting

International Contest (4)


- 13 participants from 7 countries in EU
- · Universities and consulting firms
- Various programs, mostly NLFE codes

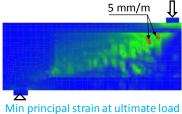

• Results:

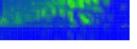
Modeling (1)

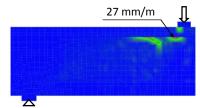
- 2D or 3D?
 - Symmetric girder mainly plain stress and if local effects near loading point negligible \rightarrow 2D
 - Asymmetric girder → transverse bending and empty ducts near loading plate → 3D
 - After consultation with Cervenka
 - Den Uijl \rightarrow 2D
 - Cervenka → 3D

Modeling (4)

- Loading plate and supports
 - Steel LE
- Interface between loading plate and girder
 - Cohesion and tensile strength = 0 MPa
 - Friction coefficient = 0,1
- Bond
 - Ribbed bar (1<slip<3 mm)</p> 21 MPa
 - Strand
 - Along transmission length 6,5 MPa
 - Outside transmission length 3,0 MPa

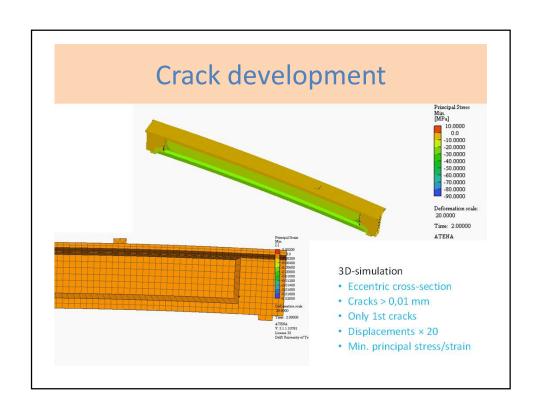

Ultimate load

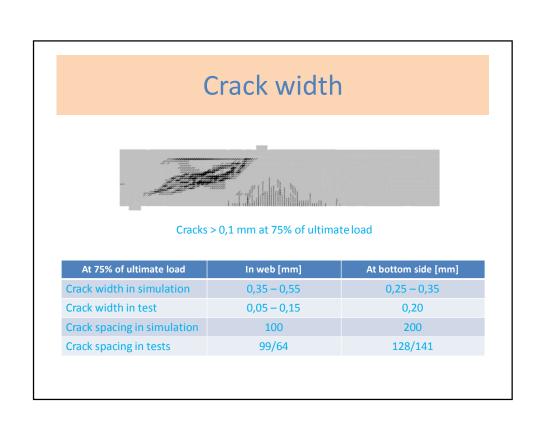

2,5


7,0 Peo 1,0

0,0

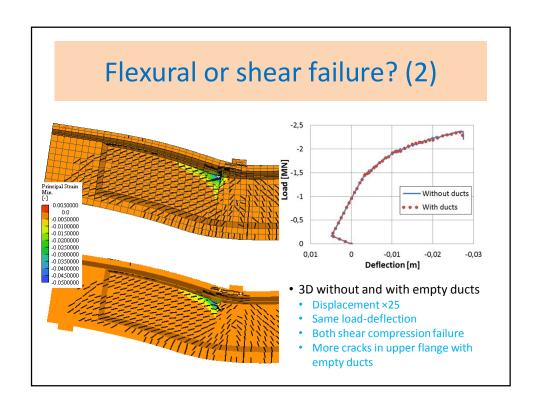
- Ultimate load
 - $-P_{u,max} = 2,59 MN$
 - $-P_{u,min}$ = 2,51 MN
- Failure mode
 - Shear compression

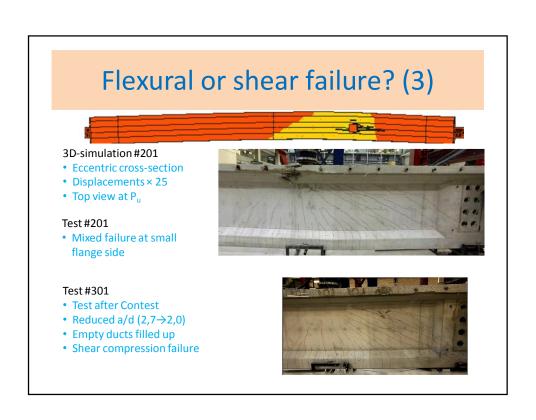




Load -deflection

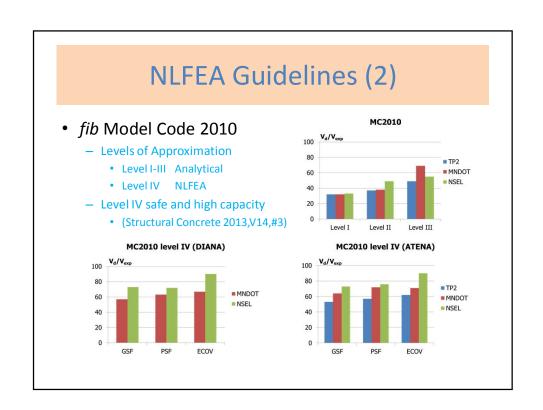
Min principal strain just after ultimate load





Various considerations

- Choices
 - Mid-beam versus edge beam: same load, transverse bending
 - Upper flange not critical → no empty ducts included
 - Non-uniform loading by loading device not considered
- Effect of:
 - Concrete strength 10% lower → P_u 3% lower
 - Prestress level 10% lower \rightarrow P_u not lower
 - − Yield stress steel Nominal instead of average \rightarrow P_u 1,5% lower
 - Element size $50 \text{ mm} \rightarrow 100 \text{ mm} \rightarrow P_u 1,7\% \text{ lower}$
- Ultimate load:
 - Minimum estimated as 3% lower based on effect of variations



NLFEA Guidelines (1)

- General
 - Guidelines meant for assessment of structures, not for estimating real strength
 - Real SLS much lower than 75% of real strength
- Materials
 - Here average instead of characteristic values
 - In ATENA concrete properties connected to cube strength
 - Material models in ATENA comply with Guidelines
- Analysis
 - Calculation methods in ATENA comply with Guidelines
 - Convergence criteria in ATENA comply with Guidelines

Concluding Remarks

- NLFEA is an important tool for structural analysis
- Validation of models is important
- Guidelines may contribute to reduction of scatter
- An International Contest provides an inspiring platform to show the state-of-the -art

Acknowledgement WEARANT MANAGEMENT ATENA CONSULTING AWARDED FO 500 FAILURE LOAD PREDICTION